Fundamentals of Asset Management

Step 3. Determine Residual Life

A Hands-On Approach

Tom's bad day...

First of 5 core questions, continued

- What is the condition of my assets?
 - What is the importance of remaining useful life?
 - How might we determine remaining useful life?

AM plan 10-step process

Determining Residual Life

Asset Lives

"Physical life" vs. "economic life"

Effective Economic life is

- The period from the acquisition of the asset to the time when the asset, while physically able to provide a service, ceases to be the lowest cost alternative to satisfy a particular service requirement.
- At a maximum, equal to the physical life, but obsolescence often will ensure that the economic life is less than the physical life.

The role of failure modes in determining residual life

Determining residual life

- Approach 1 Effective life table
- Approach 2 Effective life table, plus modification factors
- Approach 3 Direct observation table
- Approach 4 Condition and decay curve table

Approach 1, effective life table

Class	Asset Type	Effective Life	Class	Asset Type	Effective Life
1	Civil	75	6	Motors	35
2	Pressure pipework	60	7	Electrical	30
3	Sewers	100	8	Controls	25
4	Pumps	40	9	Building assets	30
5	Valves	30	10	Land	NA

Sources: manufacturers, industrial associations, GASB, colleagues, consulting engineers, research (professional associations, universities), international community

Tying age to effective life

% of Effective Life Consumed	PoF Rating
0	1
10	2
20	3
30	4
40	5
50	6
60	7
70	8
80	9
90	10

PoF is probability of failure

Example: determination of "% Residual life"

Calculate effective life consumed

Determine % residual (remaining) life

% Residual life = 1.0 - % Effect. life consumed

Example calculation

Asset acquired 1997; current year 2007; useful life 25 years

40% Residual life = 1.0 - (10 yr. LTD / 25 yr. EUL)

Percent of effective life consumed concept

Relating asset condition to percent of effective life consumed

Approach 2, amending standard effective lives

^{*}Asset design life is from average effective life tables

Modification factors for effective life tables

	Impact Rating Factor								
Condition Variables	1	2	3	4	5				
Design standards	+10%	+5%	0	-5%	+10%				
Construction quality	+10%	+5%	0	-5%	+10%				
Material quality	+10%	+5%	0	-5%	+10%				
Operational history	+10%	+5%	0	-5%	+10%				
Operating environment	+10%	+5%	0	-5%	+10%				
External stresses	+10%	+5%	0	-5%	+10%				

Approach 3: Direct observation table

Assessment (Likelihood of Occurrence within One Year	Description
Almost certain	Expected to occur within 1 year
Very high	Likely to occur within 1 year
High	Estimated 50% chance of occurring within any year
Quite likely	Expected to occur within 5 years; estimated 20% chance of occurring in any year
Moderate	Expected to occur within 10 years; estimated 10% chance of occurring in any year
Low	Expected to occur within 50 years
Very low	Expected to occur within 100 years

Recall tying condition score to asset failure

Approach 4, condition and decay curve table

Canditian Dating 0

	Effective	Condition Rating & Residual Life							
Asset Type	Life, Years	1	2	3	4	5			
Civil	75	75	60	45	30	15			
Pressure pipework	60	60	48	36	24	12			
Sewers	100	100	80	60	40	20			
Pumps	40	40	32	24	16	8			
Motors	35	35	28	21	14	7			
Electrical	30	30	24	18	12	6			
Controls	25	25	20	15	10	5			
Building assets	60	60	48	36	24	12			

Condition rating and residual life factors

Condition Rating & Residual Life Factor

Asset Type	1	2	3	4	5	6	7	8	9	10
Motor bearing	0.9	8.0	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Bearing temp sensor	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Cooling motor	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Electric motor	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Coupling	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Blower bearing	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Centrifugal blower	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Front blower bearing	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Discharge check valve	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Input butterfly valve	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
Silencer	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0

Condition rating and residual life

0.5 Residual Life Fa	Effective			Co	onditio	n Rating	ı & Res	sidual Li	ife		
Asset Type	Years	1	2 Violds	3	4	5	6	7	8	9	10
Motor bearing	25 –	22.5	Yields 20	17.5	15	12.5	10	7.5	5	2.5	0
Bearing temp senso	or 20	18	16	14	12	10	8	6	4	2	0
Cooling motor	40	36	32	28	24	20	16	12	8	4	0
Electric motor	75	67.5	60	52.5	45	37.5	30	22.5	15	7.5	0
Coupling	15	13.5	12	10.5	9	7.5	6	4.5	3	1.5	0
Blower bearing	25	22.5	20	17.5	15	12.5	10	7.5	5	2.5	0
Centrifugal blower	75	67.5	60	52.5	45	37.5	30	22.5	15	7.5	0
Front blower bearin	g 25	22.5	20	17.5	15	12.5	10	7.5	5	2.5	0
Discharge check va	llve 25	22.5	20	17.5	15	12.5	10	7.5	5	2.5	0
Input butterfly valve	25	22.5	20	17.5	15	12.5	10	7.5	5	2.5	0
Silencer	75	67.5	60	52.5	45	37.5	30	22.5	15	7.5	0

Key points from this session

What is its remaining life?

Key Points:

- Determining remaining useful life is as much art at this point as science
- Although good information is better, asset "decay curves" need not be highly detailed to be useful.
- Good CMMS data is key to building agency specific failure curves
- Good condition information is vital to assigning remaining useful life
- Incorporating good failure codes into the work order is important to building good failure curves

Associated Techniques:

- Remaining useful life assessment-
- Decay curves, useful-life tables
- Survivor curves
- Major failure modes

Tom's spreadsheet

